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Abstract 
In recent times,  improvements  in  imaging  technology  have  made available an incredible array of 
dormation in image format.  While  powerful  and  sophisticated  image processing  software tools are 
available to prepare  and analyze the data, these tools are complex and  cumbersome, requiring significant 
expertise to properly operate. Thus, in order to extract (e.g.,  mine  or  analyze) useful information  from the 
data, a  user (in our case a  scientist) often must  possess both significant science and  image  processing 
expertise. 

f i s  article is an  extended version of [8] and  describes  the  use  of  AI planning  techniques to represent 
scientific, image processing, and software tool  knowledge  to  automate  knowledge discovery  and data 
mining  (e.g.,  science data analysis) of large  image  databases.  In particular, we describe two fielded 
systems. The  Multimission VICAR  Planner (MVP) which has been  deployed for since 1995 years  and is 
currently supporting science product  generation for the Galileo mission. MVP has  reduced  time to fill 
certain classes of requests from 4 hours  to 15 minutes.  The  Automated  SAR  Image Processing  system 
(ASIP)  was  deployed at the  Dept.  of  Geology  at  Arizona State University in 1997 to support aeolian 
science analysis of synthetic aperture radar images.  ASIP  reduces the number of manual inputs in science 
product generation by  10-fold. 

Introduction 
Recent breakthroughs in  imaging  technology  have  led  to  an  explosion  of available data  in image format. 
However, these advances  in  imaging  technology  have  brought  with  them  a  commensurate  increase in the 
complexity of image processing and analysis  technology.  When  a  scientist analyzes newly available image 
data to discover patterns or to c o n f i i  scientific  theories,  they  must perform a complex set of operations. 
First, before the  data can  be used  it must often be reformatted,  cleaned,  and  many correction steps must be 
applied. Then, in order to  perform the actual data  analysis,  the  user  must manage all of the analysis 
software packages  and their requirements on format,  required  information, etc. 
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Furthermore, this data analysis process  is not a  one-shot process (indeed, we describe a specific case of  the 
process outlined in  [13].  Typically  a  scientist  will set up some sort of  analysis,  study  the  results,  and  then 
use the results of this analysis to  modify the analysis  to  improve  it. This cycle of repeated analysis may 
occur many  times - thus  any  reduction in the scientist effort or cycle  time  can  dramatically  improve 
scientist productivity. 

Unfortunately, this data preparation and analysis process is both  knowledge  and labor intensive.  Consider 
the task of  producing a  mosaic of images of the moon from the Galileo mission (corrected for lighting, 
transmission errors, and camera  distortions). Consider also that our end  goal  is  to  perform geological 
analyses - i.e.,  to  study the composition  of the surface materials on the moon. One technique used  to do 
this is to construct a ratio image - an image whose values are the  ratio  of  the intensity of the response at  two 
different bandwidths (e.g.,  the  ratio of Ma-red response and  visible  green  response). In order to  correctly 
produce this science product for analysis, one must have knowledge  of  a  wide  range of sources  including: 

0 the particular science discipline of interest (e.g., atmospheric science,  planetary geology), 
0 image  processing and the image processing libraries available, 
0 where  and how  the  images  and  associated information are stored (e.g.,  calibration  files), and 

the overall image  processing  environment (e.g., to  know  how  to  link together libraries and pass 
information  from  one program  to  another). 

Note the extreme  breadth of  knowledge  required  to perform this task - it requires science, image 
processing, database infrastructure, and image processing language  and scripting programming  knowledge. 
As  a result of the vast  amounts and  breadth of knowledge required, it takes  many  years of training  and 
experience to  become expert at  assisting  I  these  analyses. 

Automated  planning technology offers the potential automate m y  of  these  data  analysis functions 
[ 13(page SO),  51, thus enabling novice  users  to  utilize  the  software  libraries to mine the data. It also allows 
users who may be expert in  some  areas but less knowledgable in other  to  use the software tools to mine  the 
data. 

The  remainder  of this article is  organized as follows. First, we  provide  a  brief  overview  of  the  key  elements 
of AI planning. We  then  describe  two fielded planning  systems for science  data  analysis.  We first describe 
the MVP system - which automates elements  of image  processing  for  science  data  analysis for data from 
the Galileo mission.  We  then  describe the A S P  system - which  automates  elements  of  image  processing 
for science data analysis of synthetic aperture radar ( S A R )  images. 

The principle contributions of this article are twofold. 
0 First, we identify automated selection and configuration of KDD software tools as  an area where AI 

Second, we describe two systems  demonstrating  the  viability  and  impact of AI planning on the KDD 
planning  technology can  significantly extend KDD capabilities. 

process . I 

Artificial Intelligence  Planning  Techniques 
We  have applied and  extended  techniques  from  Artificial  Intelligence  Planning  to  address the knowledge- 
based software reconfiguration  problem  in  general [lo], and  two  applications  in science data  analysis (e.g., 
data mining) in specific. In order  to  describe  this  work,  we first provide  a  brief  overview  of  the  key 
concepts  from planning  technolog$. 

Planning  technology relies on an  encoding of possible  actions  in  the domain., In this encoding,  one 
specifies for each action  in the domain:  preconditions,  postconditions , and subactivities . Preconditions are 
requirements that must be met  before  the  action  can be taken.  These  may  be pieces of  mfonnation that  are 
required to correctly apply  a  software  package (such as the  image  format, availability of calibration data, 

I For  a description of other planning and scheduling  work  at  the  Jet  Propulsion  Laboratory (EL)  see [9,6] 
’ For further details on planning  the  user  is  referred  to [26], [12], [29], [30] 
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etc.). Postconditions are things  that are made  true  by the execution of the actions, such as the fact that the 
data has  been photometrically  corrected (corrected for the relative location of the lighting source) or that 3- 
dimensional topography  information has been extracted from an image. Substeps are lower level activities 
that comprise the higher level  activity.  Given  this  encoding  of actions, a  planner is able to solve individual 
problems,  where  each problem is  a current state and  a set of  goals. The  planner uses  its action models to 
synthesize a plan (a set of actions)  to achieve the goals from the current state. 

Planning consists of three main mechanisms: subgoaling, task  decomposition, and conflict analysis. In 
subgoaling, a planner  ensures that all of the preconditions of  actions in the plan are met. This  can  be  done 
by  ensuring that they are true in the initial state or by  adding appropriate actions to the plan. In task 
decomposition,  the planner ensures  that all high level (abstract) activities are expanded so that the lower 
level (subactivities) are present in the plan. This ensures that the plan consists of executable activities. 
Conflict analysis ensures that  different portions of the plan  do not  have  negative interactions that will cause 
the plan to fail. 

AI planning researchers have developed numerous  approaches to the task  of correct and efficient planning. 
Two main  planning  methods are operator-based planning  and  hierarchcal task  network (HTN) planning. 
Our work in developing automated planning  systems for science data  analysis uses a combination  of  both 
these approaches, exploiting the  advantages  of each. HTN  planning  most naturally represents task 
decomposition.  Operator-based  planning  most naturally represents subgoaling. Conflict analysis is 
relevant  to both task  decomposition  and  subgoaling, as both: 
1.  the choices one  makes  to  expand  a  higher  level activity into a set of lower level activities; and 
2. the choices  one  makes when finding an  action  to satisfy a  precondition for another action are 

constrained by the problem of  interference  with other portions of  the plan. 

Both HTN  and operator-based  planners typically construct plans  by  searching through a space  of potential 
plans (called a  plan-space).  However,  they differ considerably in  how  they search. HTN planners  specifl 
plan modifications in terms of  flexible  task reduction rules and work in a forward-chaining, top-down 
fashon. In contrast, operator-based planners work in a  backward-chaining manner  by taking a given  goal 
and  attempting to resolve its preconditions. Operator-based planners  perform all reasoning at the lowest 
level  of abstraction and provide  a  strict semantics for defining operator definitions. 

An HTN planner [7] uses task reduction rules to decompose  abstract  goals into lower level tasks. HTN 
planners can  encode  many different  types  of information into task  reductions.  By defining or not defining 
certain reduction refinements, the  designer can direct the planner towards particular search paths in certain 
contexts. The user can also directly  influence the planner by  explicitly  adding an  ordering constraint or 
goaf protection that would  not strictly be  derived  fiom  goal interaction analyses. Search-control  knowledge 
can also be  encoded by  writing  explicit  action  sequences  to  achieve  goals, thereby  avoiding considerable 
search. 

In  contrast,  an  operator-based  planner [26, 291 reasons at a single level  of abstraction -- the lowest level. 
Actions are strictly defined in terms of preconditions and effects. Plans  are  produced through  subgoaling 
and goal interaction analyses.  In  this  framework, all plan constraints (protections, ordering, and 
codesignation) are a direct consequence  of goal  achevement  and action  precondition and effect analysis. 
Thus, an  operator-based planner generally has a strict semantics grounded  in explicit state representation, 
i.e. defining what  is and is  not  true  in  a particular state (or partial  state). 

Our  approach to  planning (as embodied  by  the  DPLAN planner [7] combines these two planning  methods, 
utilizing the advantages  of each.  For  instance,  an  operator-based planner requires a  very rigid 
representation. This is both a strength  and  a weakness. It is an  advantage in that there is usually one 
obvious  method of encoding  each  subproblem.  However this rigidity can also make certain aspects of a 
problem Qfficult to  represent. Known ordering  constraints and operator sequences can be difficult to 
encode if they cannot easily be  represented  in  terms of preconditions  and  effects. Such constraints can and 
are often  forced  by adding dummy  preconditions - in which  an operator A is made  to precede an operator €3 
by forcing A to achieve a  condition C for B. However  this  solution  can often create a  misleading 
representation  in  that other occurrences of A do not  require  C to be  true.  An HTN planner, on the other 
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hand, allows the easy representation of known ordering constraints.  Domain  information,  such as 
constraints,  is easily added to  domain rules in the HTN h e w o r k .  This type  of  representation allows the 
user to easily direct the planner‘s search by  explicitly defining items  such as ordering constraints and goal 
protections. 

By using  a combination  of  both HTN  planning  and  operator-based  planning  we can easily direct search  and 
can define knowledge in an understandable  top-down fashion. In a  hybrid  representation  we also have  the 
ability to define knowledge in the  more structured operator-based fashion when  appropriate. 

DPLANs algorithm is a combination of both hierarchical task network  (HTN)  planning  techniques  and 
operator-based  planning techniques. In HTN planning, abstract actions such as “calibrate receiver” or 
"configure sequential ranging assembly”  are  decomposed into specific  directives for specific hardware 
types. In operator-based planning,  requirements of specific actions,  such as “move  antenna  to point”, are 
satisfied using  means-end analysis,  which  matches action preconditions to effects and resolves any 
occurring ordering conflicts. 

In order to apply  planning technology to an application domain,  one  must  construct  a planning knowledge 
base that encodes  knowledge of the domain. This involves encoding the goals, operators, task 
decompositions,  and  probably customizing  a search strategy ’ for the  domain.  These elements would 
populate a planning  knowledge base that would  then be  used by  a  general  planning engine to solve 
planning  problems in the domain. 

The DPLAN Planning  Algorithm 
The DPLAN planning  algorithm uses  a  unique combination of  the  HTN  and  operator-based  planning 
techniques  discussed  above. DPLAN  operates  by refining a set of input  top-level  goals into a set of  low- 
level operational goals (e.g., executable actions).  Plans are represented  by  a  three-tuple:  <U,C,S>  where U 
is a set of non-operational  (or high-level)  goals, C is  a set of constraints,  and S is  a set of operational-goals. 
At the end of planning, U should be  empty and the goals in S are returned as the final plan steps. 

. i -  

For  example, in the image processing case described  above, each of  the  elements of the abstract plan  would 
be as  follows: 

the input non-operational goals (U) would  be  the  image  processing  goals from the  user,  such  as: 

the output operational goals (S) (executable activities) would be activities  representing  parameterized 

the constraints from a final plan ( C ) would  spec@  how the outputs of  one program were to be used 

radiometric correction, fill in missing  lines,  etc. ; and 

invocations of image  processing programs; and 

as the inputs for other programs  and the required sequence of execution. 

An overview  of the DPLAN  algorithm is shown in Figure 1. The main  inputs  to  DPLAN are: a set of high- 
level goals G, a set of decomposition rules R, and  the set of all possible  operational  goals 0. Search is 
implemented by keeping a  queue of partial plans  to  be  explored.  Currently,  plans are selected  from  the 
queue  using a best-fist heuristic; however,  other  search  techniques  could  easily be employed. Step 1 and 
Step 2 of the main loop remove  the  best plan off the  queue, and  Step 3 checks  if that plan is a  solution.  If 
no solution has  been  found then  a  new  goal  is  selected for refinement  in Step 4. Step 5 chooses  a 
refinement strategy for that goal, and in Step 6 ,  any  new plans created through that strategy are inserted 
into the plan  queue. 

A plan  is considered a solution if  two  conditions  are  true. The first  is  that  there are no non-operational 
goals left to be refined. The second  condition  is  that all context goals  have  been achieved or are directly 
achevable in the current plan.  Context  goals are goals that were  needed  for  applying  a  decomposition  rule, 
but are supposed to be accomplished  by  some  other  part  of  the  plan. If all context goals have  been 
achieved,  then the plan is returned as a  success. 
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Algorithm DPLAN(G,R,O) 
Let R be a set of  decomposition  rules, 

Q be  a list of  partial-plans, 
P be the current plan, and 

let Po be a plan <non-operational  goals = G, constraints = { } , operational goals = { } > 
Initialize the plan queue Q := (Po) 

While Q is not  empty 
(Step) 

1. Select a  promising  plan P in Q using  heuristics, 
2. Remove P fiom Q 
3. If P contains only  operational-goals 

If the context goals in P are achieved, return P. 
Else  goto 1.  

4. Else  choose a  non-operational goal g fiom CJ. 
5. Refine g. . 
6. Insert any new plans generated  by refinement into Q. 

Figure 1 : The DPLAN Search  Algorithm 
? . (  

DPLAN  can  use several different refinement strategies to handle non-operational  goals. There are two 
main  types of goals in  DPLAN:  activity-goals  and state- goals.  Activity-goals correspond to operational or 
non-operational activities and are usually, manipulated  using  HTN  planning  techniques. Operational 
activity-goals are considered primitive  tasks that can  be directly executed. Non-operational activity-goals 
must be further decomposed into operational  ones through HTN reduction  rules. State-goals correspond to 
the  preconditions  and effects of  activity-goals, and are achieved through operator-based planning. State- 
goals that have  not yet been achieved are also considered non-operational. Figure 2 shows the procedures 
used for refining these two types  of  goals.  As soon as  a refinement strategy is applied to an activity-goal or 
state-goal, it is removed from the  list of non-operational goals. 

DPLAN can also use additional domain  information for more efficient and flexible planning. For instance, 
a  planning problem  can specify a  list of static context facts. These facts represent operational goals that are 
always considered to be true. Such goals are easy for DPLAN to verify during  planning  and  can  help in 
pruning off search branches. Other possible  inputs include sets of preconditions and effects for operational 
activities,  a set of final goals that  must be true  in  the plan solution, and  a set of initial goals that are true at 

If  g is an Activity-Goal, 
1. Decompose : For each  decomposition  rule r in R which  can  decompose g , apply  r to produce a 

new plan P', If all constraints  in P' are consistent,  then  add P' to Q. 
2. Simple Establishment : For each  other  activity-goal g' in P that  can be unified with g , simple 

establish g using g' and  produce  a  new  plan P'. If all  constraints  in P' are consistent, then  add P' 
to Q. 

If g  is  a State-Goal, 
1. Step  Addition : For each  activity-goal, g' that asserts g as an effect, add g' to P to produce a 

new plan P'. If the constraints  in P' are consistent,  then  add P' to Q. 

I 2. Simple Establishment : For  each  activity-goal g' in U that  has  an effect e that  can be unified 
with g,  simple establish g using e and  produce a new  plan P'. If all constraints in P' are 
consistent,  then add P'to Q. 

Figure 2: Goal  Refinement  Strategies 
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the beginning of planning.  This  information is  not required for  standard  DPLAN operation, but can be very 
beneficial during  planning. 

The Multimission VICAR Planner (MVP) 
MVP [5] partially automates  the  generation  .of  image  processing  procedures  from  user requests and a 
knowledge-based  model  of  VICAR  image  processing area using Artificial Intelligence (AI)  automated 
planning techniques. VICAR  image  processing is an instance a planning  problem  where: 

the planning actions or operational goals/activities are VICAR  image  processing  programs; 
the planning initial state is  the current state of  the  image files of interest; and 
the planning input goals are the  user  image  processing goals. 

The VICAR  environment  (Video  Image  Communication  and  Retrieval’.) [23] supports  image  processing 
for: JPL flight projects including  VOYAGER,  MAGELLAN,  and  GALILEO,  and  CASSINI; other space 
imaging  missions  such as SIR-C  and  LANDSAT;  and  numerous other applications including  astronomy, 
earth resources, land use, biomedicine,  and forensics with a total of  over 100 users. VICAR allows 
individual processing steps (programs) to be  combined into more  complex  image  processing scripts called 
procedure definition files (PDFs). . The primary  purpose  of  VICAR is to enable  PDFs for science analysis 
of image data from  JPL missions. 

I Figure 3: Raw  and  Processed  Image  Files 

An Example of MVP Usage 
In order to illustrate how  MVP assists in  VICAR planetary image processing, we  now  provide a typical 
example of MVP usage  to  ground the problem  and  the  inputs  and outputs required by MVP. The three 
images, shown at the left of Figure 3 are of the planet Earth  taken  during  the Galileo Earth 2 flyby in 
December 1992. However,  many corrections and  processing steps must  be  applied  before the images  can  be 
used. First, errors in the compression  and transmission of  the  data  from  the Galileo spacecraft to receivers 
on Earth  has resulted in missing  and  noisy  lines  in  the  images.  Line fillin and spike removals are therefore 
desirable. Second, the images  should  be  map projected to correct for the spatial distortion that OCCWS when 
a spherical body is represented  on a flat surface. Third, in order  to  combine the images,  we  need to 
compute  common points between the images  and  overlay  them appropriately. Fourth, because we are 
combining multiple images  taken  with different camera states, the  images  should be radiometrically 
corrected  before  combination. 

This name is somewhat  misleading as VICAR  is  used  to  process considerable non-video  image data such 
a~ MAGELLAN synthetic aperture radar  (SAR)  data 
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display automatic  nav  residual  error perform manual navigation 
radiometric correction pixel spike removal 
missing line fillin uneven bit weight correction 
no limbs present in images perform  automatic  navigation 
display automatic  nav  residual error perform  manual navigation 
display man nav residual error map project with parameters ... 
mosaic  images smooth  mosaic searns  using DN 

Figure 4: Example Problem  Goals 

I I 

MVP enables the user to input image  processing  goals through a  graphical  user interface with most of the 
goals as toggle buttons on the interface. A few options require entering some text, usually  function 
parameters that will  be  included  as literals in the appropriate place in the generated VICAR script. Figure 4 
shows  the  processing goals input to MVP.  

Using the image processing goals and its knowledge of image  processing  procedures, Mvp constructs a 
plan of image processing steps to achieve the requested  goal. This plan is translated into a VICAR script 
which,  when  run,  performs the desired image corrections  and constructs a  mosaicked image of the three 
input  files.  The  finished result of the image processing  task  is  shown at the right in Figure 3. The three 
original images now  appear as a single mosaicked  image, map projected with missing and corrupted lines 
filled in. 

To h-ther continue this example, shown in Figure 5 is a code fragment to perform portions of image 
navigation4 for a  Galileo image’. The higher-level  conceptual steps (i.e., plan steps) are shown at the left 
and the corresponding VICAR code is shown at  the  right. In this case the overall user  goal is to navigate 
the image. The other subgoals (and steps) are necessary  to support this goal. 

Thus Mvp allows the user to go directly from high level image processing goals to  an executable  image 
processing program. This enhances  productivity  because the user can  focus on which  processing goals are 
needed for the science rather than  being  bogged  down  in details such as file format, normalizing  images, 
etc. 

MVP does  not always fully automate  a  planetary  imaging  task. In typical  usage, the analyst receives a 
request, determines whch goals are required  to fill the  request, and runs MVP to generate a VICAR script. 
The analyst then runs  this script and  then  visually  inspects  the  produced  image(s)  to venfy that the script 
has properly satisfied the request. In most  cases,  upon  inspection, the analyst determines that some 
parameters  need to  be modified subjectively or  goals  reconsidered  in context. This  process typically 
continues several iterations  until  the analyst is  satisfied  with the image product. 

Task Reduction in MVP 
MVP represents VICAR processing and science  data  analysis  knowledge  in  the form of task reduction rules 
[17]. For example, Figure 6 shows  a  decomposition rule for the problem  class mosaicking with absolute 
navigation . This rule states that if mosaicking  is  a goal  of the  problem and  an initial problem 
decomposition  has  not yet been  made, then  the  initial  problem  decomposition  should be into the 

Image navigation is  the process of  determining  the  matrix  transformation  to  map from the  2-dimensional 
(line, sample) coordinate space of an  image  to  a 3-dmensional coordinate space  using dormation on the 
relative position of  the  imaging  device  (spacecraft  position) and a  model of the target being imaged (e.g., 
the  planetary  body) 
5 This  code was  generated  by MVP. 
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subproblems: local correction, navigation, registration,  mosaicking, and touch-ups and that  these 
subproblems must be  solved in that  order. 

Navigate 
Images: 
Manual 
Tiepoint 
Selection 

Conceptual Steps VICAR Code 

I1 Construct initial overlap pairs MOSPLOT 

- ! mos.overlap is just a holder for the overlap plot 
construct initial MOSFLOT  inp='fle-list.NAV  nl=lines-O-6  ns=samples-O-6  project="GLL " 
overlap pairs 

d d  prinVnofeed mos.overlap 
d d  copy printronx.p!t mos.overlap 

refine initial 
overlap pairs 

- I 1  Refine initial overlap pairs ediMs 
EDlBlS INP'file-list.OMR' 

I I  Manmatch mosak file  list 
!I If there is no existing tiepoint file ..... 
!I Check if a tiepoint file exists. 

find previous 
tiepoint file 
(if present) 

!I LOCAL STR STRING  INlT = - iI  The fo l lowing  code is in written VMS 

LET  -ONFAIL = 'CONTINUE' !! Allow the pdf to continue 

D U  DEASSIGN NAME 
D U  DEFINE NAME 'FSSEARCH(Vle-list.TP") 
LOCAL STR STRING 
TRANSLOG  NAME STR 
LET  -ONFAIL = "RETURN' I I  S e t  PDF to return on enur 

!I if a file is not found. 

IF (STR = ") 
MANMATCH INP=~file-listNn\r~file-listOMR") + 

use manmatch 
program to 
construct or 

!I If an d d  tiepoint file exis ts... 
!I The d d  tofile is mrt of inout and later overwritten. 

OUT="file-listF PROJECT='GLL  "SEDR FILENAME="file-list.lLlSr 

refine tiepoint ELG 
file \ 

r -  

MANMATCH INP=~file~listNA\r~file~listOVER'.'file~listTP) + 

OlJT='file-listTP  PROJECT='GLL  "SEDR FlLENAh4E=Tle-listlLIS~ 

use  tiepoints 
to construct - 
OM matrix 

!I OMCOR2 
OMCOW !NPt'file_list.NAV."file-listTP) PROJECT='GLL " GROUND=@GOOD 
OMCOR2 INP(Vle~list.NAV.'file~~~t~) PROJECT='GLL " GROUND=@GOOD 

Figure 5: Sample VICAR Code  Fragment 

LHS - 
GL = mosaicking  goal present GR= { 

1. 
Co = null 2. 
C2 = an initial classification has not 3. 

yet been made 4. 
5. 
1 

G =  { 
e 

e 

RHS - 
Local correction, 
Navigation, 
Registration, 
Mosaicking, 
Touch-ups 

these subtasks be performed in 
order 1.2.3.4.5 
protect local correction  until 
mosaicking 

N = problem class is  mosaicking 

Figure 6: A Task  Reduction  Rule  from MVP 
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' .  

operator GALSOS 
:parameters ?infie ?ubwc ?calc 
:preconditions the project of ?infile must be galileo 

:effects reseaus are not intact for ?infile 
the data in ?infile must  be  raw data values 

the data in ?infile is  not  raw data values 
missing lines are not filled in for ?infile 
?infile is radiometrically corrected 
the image  format for ?infile is halfword 
?infile has blemishes-removed 

if (UBWC option is selected) then ?&de is uneven bit weight corrected 
if (CALC option is selected) then ?infile has entropy values calculated 

Figure 7: Sample Operator 

Operator-based Planning in MVP 
MVP also uses  operator-based planning teclmques [26]. An operator-based planner uses models of actions 
in a domain to achieve goals from an initial world  state. In the VICAR domain the actions (operators) are 
image processing steps, initial state  the initial image file state, and the  goals the processing request. 

In operator-based planning, an action is represented in terms of its preconditions (required to be true before 
an action can  be executed), and  its effects (true after an  action is executed). For  example, the GALSOS 
program to radiometrically correct Galileo image files is  represented  Figure 7. 

When constructing a plan to achieve  a goal GI, a planner will  consider those actions that have GI as  an 
effect (thus considering GALSOS to achieve a radiometric correction  goal). In order to  use  GALSOS, 
MVP must also ensure that the  preconditions  of the operator are met, in a process called subgoaling. MVP 
must also ensure that operators in the plan  do  not  undo conditions  required  by other parts of the plan - this 
is performed in  a process called conflict analysis6. 

One novel aspect of the VICAR domain is that considerable search in planning is not at the program 
selection level (which corresponds  to operator selection in the planning  process) but rather at the program 
option selection level (which corresponds  to selecting the appropriate operator effect after the operator has 
been selected). In order to efficiently handle this type  of search,  we  have integrated a constraint reasoning 
mechanism  which  allows the planner to reason about compatible  and  incompatible program  option settings 
in a least-commitment fashion (see [5] for details). 

Impact of Combining  Decomposition  and  Operator-based  Planning  Methods 

One obvious question is the impact of combining  decomposition  and operator-based  planning methods. 
Earlier in the article, we  stated that the two reasons for combining decomposition and operator-based 
methods were user  understandability and search control. While  it  is  difficult to quantify the effectiveness of 
increased understandability of  plans, in this section we  attempt  to  roughly quantify the effectiveness of 
decomposition methods in controlling  the  search required by  the  operator-based planner. 

The principle impact of decomposition  planning on search is  to  decompose the planning process into 
independent subproblems that can be  solved independently  in  a known sequential fashion. In the  current 
MVP knowledge base,  there  are  seven such  problem spaces:  local  correction, automatic navigation, manual 

6 Because subgoaling and conflict analysis in operator-based planning are not  unique to MVP, we  have 
only briefly sketched their key  elements.  For  a  more detailed treatment of  operator-based planning 
algorithms the reader  is  referred to [26]. 
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navigation, photometric correction, registration, mosaicking, and  touch-ups. In Figure 8 , we describe the 

Problem  Space operators goals typical search 
local correction 15 s 7  60 
automatic navigation 20 4 150 
manual navigation 24 4 300 
photometric correction 5 2 60 
registration 13 5 110 
mosaicking 4 3 325 
touch ups 10 3 325 

I,.  

Figure 8: Problem Space Information 

I I 
salient information  on  each  of the  problem-spaces. First, for each problem space we list the number  of 
relevant planning operators and  top-level  input goals as this gives  some indication of the sue of the 
problem space. We also list the typical  number of plans searched in the  problem space. 

The overall effect of  decomposition planning on  search is to break down  the search into more  manageable 
subproblems. For example, if subproblem A typically requires searching a plans and subproblem B 
typically requires searching p plans, solving both problems  simultaneously might require on order ap 
plans'. Overall, because the search  spaces  combine  (roughly!)  multiplicatively, the impact of adding 
domain  knowledge to decompose subproblems has  been enormous.  For  example, originally the  automatic 
navigation  and manual navigation problem  spaces  were  represented  as  a single navigation problem space. 
However, this problem  space required  too  much search (on the order of 50,000 plans), so it  was  broken into 
the automatic  and  manual navigation  problem spaces. 

An Example of Subgoaling in VICAR Image  Processing 
To illustrate how the operator-based  planning process  performs subgoaling, consider the subgoal graph 
illustrated in Figure 9.8 In this case  the  user  has selected the goal that  the  images be navigated  using  manual 
methods and that the archval navigation dormation for the  image  should  be  updated. The decomposition 
planner  has access to the knowledge that in order to navigate the  image,  the operational goal is to construct 
an OM matrix whch defines the transformation from (line, sample)  in  the  image to some known frame  of 
reference (usually the position relative  to  the target planet center).  The planner knows that in order to 
compute tlus matrix it must have  a tiepoint file,  the project of the  image,  and  the  image  files formatted into 
a  mosaic file list. In order to  produce  a  tiepoint file for the goal specification of manual  navigation,  the 
planner  uses the MANMATCH  program.  The  MANMATCH  program in turn requires  a refined overlap 
pairs file, the project of the images,  the initial predict information,  and  again  a mosaic file  list. The refined 
overlap pairs file can be constructed  using  the EDIBIS program,  but this requires  a  crude overlap pairs file 
based on an initial predict source.  This  crude overlap pairs file in turn requires the default navigation 
method,  and the latitude and longitude  of  sample  image files. The rest  of  the  graph  is  generated similarly. 
This  subgoal  graph is  generated in response  to  the particular combination  of  user goals and the state of  the 
selected image files. 

7 This is clearly a simplification, it  might  require  less search than this because  weak  heuristics  might  tend  to 
guide  the search well.  However,  it  might be worse  because  adding  the  second subproblem might  weaken 
heuristics that work  well for the  first subproblem alone.  Empirically  in  the MVP image processing 
application combining two search  spaces A and B as above  would  result  in  search slightly less  than ap. 
' The VICAR code previously  shown in Figure 5 is  taken from this  example. 
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refined-overlap-pairs 

I I 

OMCOR2 

mosaic-file-list 

I 

CONSTRUCT MOSAIC FILE LIST 

project 

Figure 9: Subgoal graph for manual  relative navigation  of Galileo image files. 

An Example of Resolution of Goal  Conflicts in VICAR  Image Processing 
To illustrate how the  operator-based  planning  process resolves interactions between steps, consider the 
(simplified) image  processing operators  shown  in  Figure 10. The relevant operators to achieve the goals of 
missing  line fillin, spike removal,  and  radiometric correction for Voyager and Galileo images are shown 
below.  When constructing a plan to achieve these  goals, depending on the project of the image file (e.g., 
either  Voyager or Galileo), MVP determines the correct program to use  because the preconditions  enforce 
the correct program selection. 

Operator VGRFILLIN  GLLFILLIN ADESPIKE FICOR77 GALSOS 
Preconditions VGR image  GLL  image VGR image GLL image GLL  image 

or 
EDR present  Raw pixel VGR image 

raw  values values 
Effects 

Saturated pixel Not raw values 
Not raw values 

overflow con. removal filled in filled in 
Reed-solomon Blemish  Spdce  removal Missing  lines  Missing lines 

corr. 

Not  missing 
lines filled in 

Figure 10: Simplified  Operator  Definitions 
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However, determining the correct ordering of  actions  can  sometimes  be  complex.  In this case, the correct 
order to achieve the goals  of line fillin, spike removal, and radiometric  correction  is dependent upon the 
project of the image file. In the case of  Voyager files, ADESPIKE (spike removal) requires raw pixel 
values and FICOR77 (radiometric correction) changes pixel values  to  correct  for  camera  response  function 
-- thus FICOR77 removes a  necessary condition for ADESPIKE (raw pixel  values). This interaction can be 
avoided  by enforcing that ADESPIKE occurs  before FICOR77.  Additionally,  VGRFILLIN requires binary 
EDR header on the image file, and.ADESPIKE  removes the binary  EDR  header,  thus ADESPIKE removes 
a necessary condition for VGRFILLIN. This interaction can be avoided  by requiring VGRFILLIN  to be 
executed  before  ADESPIKE.  Thus in the VOYAGER  example  the  only legal execution order  is 
VGRFILLIN, ADESPIKE, FICOR77. 

In  the Galileo case, GALSOS undoes  missing  line fillin (the goal achieved  by the GLLFILLIN  operator). 
Thus in order to avoid  undoing &IS processing, GLLFILLIN  must be applied after GALSOS.  Additionally, 
GALSOS requires raw pixel values,  and ADESPIKE alters the pixel  values, so ADESPIKE removes  a 
necessary condition for GALSOS. This interaction can  be avoided  by  requiring that GALSOS occur 
before ADESPIKE. 

This simple  example,  depicted in Figure 11 ,  illustrates some of  the  interactions and context-sensitivity  of 
the VICAR image  processing application. All of  these  interactions  and  context sensitive requirements  are 
derived  and  accounted for automatically  by  MVP  using  the  operator specification, thereby  allowing  plan 
construction despite the presence of complex interactions and conditions. 

. t  

Impact of the MVP system 
The MVP system was deployed to the Multimission  Image  Processing  Laboratory at JPL in 1994.  Since 
then it has  been in use by  analysts assisting in producing certain  classes of science data products. User 
reports indicate that MVP reduces effort to  generate an initial PDF for an  expert  analyst  from 112 a  day  to 
15 minutes and  reduces the effort for a novice analyst from several  days  to 1 hour. This represents over  an 
order of magnitude in speedup.  The analysts also judged that the  quality  of the PDFs  produced  using MVP 
are comparable to the quality of completely manually  derived  PDFs. 

The  Automated  SAR  Image  Processing (ASIP) System 
ASIP  automates synthetic aperture radar ( S A R )  image  processing  based  on  user  request and a knowledge- 
base  model of S A R  image processing using AI  automated  plarining  techniques [14, 151. SAR operates 
simultaneously in multipolarizations and multifrequencies  to  produce  different images consisting of radar 
backscatter coefficients ( S O )  through different polarizations  at  different  frequencies.  ASIP  enables 
construction of an  aerodynamic  roughness image/map (20’ map) from h s  raw data - thus  enabling  studies 
of Aeolian  processes. 

Execution  Order 
Voyager Galileo Voyager Galileo 
VGRFILLIN GLLFILLIN VGRFILLIN GALSOS 

remove spikes ADESPIKE ADESPIKE ADESPIKE GLLFILLIN 
radiometric correction FICOR77 GALSOS FICOR77 ADESPIKE 

Figure 1 1 : VICAR routine  comparisons 

9 z0 is pronounced “z-naught” referring  to  the “z” axis  (elevation)  and  a  zero (naught) velosity. 
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Studies of Aeolian Processes 
The  aerodynamic  roughness  length (20) is  the height above a surface at which a wind profile assumes zero 
velocity. z0 is an  important  parameter in studies of  atmospheric circulation and aeolian sediment transport 
(in laymans terms: wind patterns, wind  erosion patterns, and sandsoil  dnft caused  by  wind) [18, 19, 201 
Estimating z0 with radar is very beneficial because  then large areas can  be  mapped  quickly to study  aeolian 
processes, as opposed to the slow  painstaking  process of manually taking field measurements [ 13. The final 
science  product is a  VICAR  image called a z0 map that the scientists use  to  study the aeolian processes. 

Figure  12:  Aerodynamic  Roughness  Length  Map  Produced  Using  ASIP 

Planning to  Generate  Aerodynamic  Roughness Maps 
ASIP is  an end-to-end  image  processing  system  automating data abstraction, decompression,  and (radar) 
image  processing  sub-systems;  and intelligently integrates a  number  of S A R  and z0 image  processing sub- 
systems.  Using a knowledge  base  of  SAR  processing actions and a general-purpose  planning engine, ASIP 
reasons  about the parameter  and  sub-system constraints and  requirements. In this fashion ASIP extracts 
needed  parameters  from  image  format  and  header files as appropriate, relieving the user  of  having to know 
about these aspects of the problem.  These  parameters, in conjunction  with the knowledge-base of S A R  
processing steps, and a minimal set of  required user inputs (entered through a single graphical user 
interface (GUI)), are then  used to create the processing plan. ASIP represents a number of processing 
constraints. For  example,  ASIP represents the fact that  only  some subset of all possible combinations of 
polarizations are legal (as dependent  on the input data). ASIP also represents image  processing  knowledge 
about  how to use polarization and  frequency  band  information to compute  parameters  used for later 
processing of backscatter to aerodynamic  roughness length conversion - thus freeing the user from having 
to understand these processes. 

For  example, in generating  an  aerodynamic  roughness length map, the user  must  perform several steps: (1) 
data acquisition - getting the data  from a proprietary tape format  using  the  CEOS  reader  software  package; 
(2) data conversion: the data must  be  decompressed by using  another  software  package; (3) pre-processing: 
header  and label files must be added  to the data files; (4) processing: using  the  zOmap  software  package the 
actual z0 map  can  be constructed; and (5) post processing: depending  on the desired output the z0 image 
may  need to be  converted to other proprietary formats for subsequent processing. 

Figure  12  shows  an  aerodynamic  roughness length map  of a site near  Death Valley, California generated 
using the ASIP  system (the map  uses  the L band (24 cm)  SAR  with  HV polarization). Each of the 
greyscale  bands indicated signifies a different approximate  aerodynamic  roughness length. This  map is 
then  used to study aeolian processes at the Death  Valley site. 

Since the ASIP  system  has  been fielded, it  has  proven  to  be  very  useful  in the use  of  generating 
aerodynamic  roughness  maps  with three major benefits. First,  ASIP  has  enabled a 10-fold reduction in the 
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number of manual inputs required to produce an aerodynamic roughness map.  Second, ASIP has enabled a 
30% reduction in  CPU processing time to produce such a  map. Third, and  most significantly ASIP has 
enabled scientists to process their own data (previously programming staff were required). By enabling 
scientists to directly manipulate that data and reducing processing overhead and turnaround, science is 
directly enhanced. 

Related Work 
Related work can be broadly classified  into: related image processing languages, related automated image 
processing work, and related AI planning work. In terms of related image processing languages, there are 
many commercial and academic image processing packages - such as IDL, Aoips, and  Merlyn. Generally, 
these packages have only limited ability to automatically determine how to use different image processing 
programs or algorithms based on the problem context (e.g., other image processing goals and initial image 
state). These packages only support such continrt sensitivity for a few pre-anticipated cases. 

However, there are several previous systems for automatic image processing  that  use  a domain independent 
mechanism. Work at the Canadian Centre for Remote Sensing (CCRS) [4] has been towards a case-based 
system for image processing and acquisition of image processing knowledge. This work dffers from MVP 
and  ASIP in that they use a case-based reasoning approach in  which an existing image processing problem 
is solved by retrieving a previous problem and solution and adapting it to solve the current problem. Grimm 
and Bunke [16] developed an expert system to assist in image processing within the SPIDER library of 
image processing routines. This system uses many similar approaches in that: 1 .  it classifies problem types 
similar to the fashion in, which MVP (and ASIP) performs skeletal planning; and 2. it also decomposes 
larger problems into subproblems which MVP (and ASIP) performs in decomposition planning. This 
system is implemented in a combination of an expert system shell called  TWAICE (which includes both 
rules and frames) and Prolog. This very basic implementation language gives them considerable power and 
flexibility but means that their overall system uses a less declarative representation than our decomposition 
rules and operators which have a strict semantics [12,3]. Previous work  on automating the use of  the 
SPIDER library includes [28], which performs constraint checking and step ordering for  a set of conceptual 
image processing steps and generation of executable code. This work  differs from MVPIASIP  in that: 1.  
they do not infer missing steps from step requirements; 2. they  do  not  map from a single abstract step to  a 
context-dependent sequence of image processing operations; and 3. they  do  not  reason about negative 
interactions between subproblems. MVP/ASIP has the capability to represent and  reason  about all 3 of 
these cases. Other work by Jiang and Bunke [21] involves generation of image processing procedures for 
robotics. This system performs subgoaling to construct image  processing plans. However their algorithm 
does not appear to have a general way of representing and dealing with negative interactions between 
different subparts of the plans. In contrast, the general Artificial Intelligence Planning techniques used by 
MVP use conflict resolution methods to guarantee correct handling of subproblem interactions. 

Other work by Zmuda E311 describes work in automatically deriving classification software by using 
machine learning techniques. However for the MVP applications, the  search  space of possible programs is 
too large and there is no end feedback (as in classification) to drive the  learning process. Another piece of 
related work is the  SAT1 system [2], whch uses an interactive dialogue with  the user to drive an automated 
programming approach to generating code to satisfy the  user request. OCAPI [ 1 13 a semantically integrated 
automated image processing system, while being  very general provides no clear way  to represent the  large 
number of logical constraints associated with  the problems MVPIASIP  was designed to solve. Another 
image processing system [24] provides a  means  for  representing  knowledge  of image analysis strategies in 
an expert system but does not  use the more declarative AI planning representation. Perhaps the most 
similar planning and image processing system is COLLAGE [22]. The  COLLAGE  pIanning differs from 
MVP and ASIP in that  COLLAGE uses solely the decomposition approach  to planning. COLLAGE differs 
from MVP in  the applications sense in that it focuses primarily on earth imaging applications in the Khoros 
environment, where MVP has focused on planetary applications in the VICAR environment. 

Other related work  in automatic image processing focuses  on  speedmg execution of algorithms [25, 271 
through parallelism but requires that the  image processing plans  be  manually constructed into  task 
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networks whereas MVP automatically constructs the task network from the goal specification and initial 
image state information. 

From the standpoint of planning technology, MVP and ASIP differ from other planning work in two ways. 
First,  it integrates decomposition-based (also called hierarchical task network)  and  operator-based 
approaches to more closely model how human experts solve image processing problems. Second, it uses 
an explicit constraint model  to  efficiently search among operator effects (which  correspond to  VICAR 
program options). 

Conclusions 
This paper  has  described knowledge-based  reconf1guration of data analysis software  using AI planning 
techniques. This represents an important area where  AI planning can significantly enhance  KDD 
processes.  As evidence  of this potential,  we described two  fielded  planning systems that enhance KDD: the 
MVP system,  which automates image processing to support Galileo image data science analysis; and the 
ASIP system  which  automates  production of aerodynamic  roughness  maps to support geological science 
analysis. 
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